
432 W. Gypsy Lane Road
Bowling Green, OH 43402
Tel. (800) 847-4740
Fax (877) 606-6853
sales@fptech.com

Version 6.1.01 USP New Features

JSON Import and Export
 filePro now has the ability to import and export JSON files.

 Export:
 JSON [id] :CR fname - Creates a JSON file. The id is optional and
 defaults to "0" if only one file is open at
 a time. If two or more are open, the id
 must be supplied ("0"-"99")
 JSON [id] :CR-|:CL - Closes an open JSON file.
 JSON [id] :OB [name] - Starts an object in a JSON file.
 JSON [id] :OB- - Closes an object.
 JSON [id] :AR [name] - Starts an array in a JSON file.
 JSON [id] :AR- - Closes an array in a JSON file.
 JSON [id] :IT name [value] - Adds an item to a JSON file, if a value is
 not supplied, the resulting value will be
 null.
 JSON [id] :NO name [value] - Adds a number to a JSON file, if a value is
 not supplied, the resulting value will be
 null.
 JSON [id] :BL name [value] - Adds a boolean value to a JSON file, if a
 value is not supplied, the resulting value
 will be null.

 Note: Names will be ignored when adding an item, number, or boolean directly
 to an array.

 Example:
 JSON :CR "/tmp/myfile.json"
 JSON :OB
 JSON :OB "name"
 JSON :IT "first" "Tom"
 JSON :IT "last" "Anderson"
 JSON :OB-
 JSON :NO "age" "37"
 JSON :AR "children"
 JSON :IT "" "Sara"
 JSON :IT "" "Alex"
 JSON :IT "" "Jack"
 JSON :AR-
 JSON :IT "fav.movie" "Deer Hunter"
 JSON :OB-
 JSON :CL

 Output:
 {
 "name": {
 "first": "Tom",
 "last": "Anderson"
 },
 "age": 37,
 "children": ["Sara", "Alex", "Jack"],
 "fav.movie": "Deer Hunter"
 }

 Import:
 JSON [id] :RO fname - Opens a JSON file for reading. The id is
 optional and defaults to "0" if only one
 file is open at a time. If two or more are
 open, the id must be supplied ("0"-"99")
 value = JSON [id] :GV key - Get a value from a JSON file using a path
 to a key.

 Keys are a way to reference part of a JSON document using dot syntax. An
 example of dot syntax would be a key, such as "name.first" or "age".
 There are reserved symbols used in key syntax that can be used to
 retrieve certain values from the JSON:

 '#' is used to get the number of elements inside of an object or array.
 '@' is used to specify a literal, or if at the end of the path, get the
 name of the current object.

 Index positions can also be used to reference specific elements by
 numeric position inside of an object or an array. Indexes in Key Syntax
 start at position 1.

 x = JSON :GV "fruits.10" will attempt to find the tenth (10) item inside
 a fruits object or array.

 x = JSON :GV "fruits.@10" will attempt to find a key named "10" inside a
 fruits object and return its value.

 Example:
 Given the following JSON, here are example commands and what they return.
 {
 "name": {
 "first": "Tom",
 "last": "Anderson"
 },
 "age": 37,
 "children": ["Sara", "Alex", "Jack"],
 "fav.movie": "Deer Hunter"
 }

 Then: JSON :RO "/tmp/myfile.json" ' open the JSON file for reading
 Then: x=JSON :GV "name.first" ' x contains "Tom"
 Then: x=JSON :GV "name.1.@" ' x contains "first"
 Then: x=JSON :GV "age" ' x contains "37"
 Then: x=JSON :GV "children.#" ' x contains "3"
 Then: x=JSON :GV "children.1" ' x contains "Sara"
 Then: x=JSON :GV "fav\.movie" ' x contains "Deer Hunter"
 Then: JSON :CL ' close the JSON file

Fill-In-The-Blank PDFs
 filePro now has the ability to place fill-in-the-blank PDF objects on output
 formats and also retrieve values from PDF documents that have
 fill-in-the-blank fields to be used in Processing.

 There are four types of PDF Form Objects that can be used:
 • Textbox
 • Dropdown
 • Checkbox
 • Radio

 When a PDF output is generated, placed objects will be interactive in any
 supporting PDF viewer/editor. These PDF files can be saved after filling in
 fields, and processing can be written to retrieve values from these fields.

 Note: Using the new generation features in a report can lead to unintended
 results. Fields are shared across records and pages. Updating one field
 updates all matching instances of that field throughout the document. It is
 recommended to use output forms over output report

 Please See Fill In PDFs in the manual for more information on document
 creation.

Manual Link

 If the PDF was created with filePro, field names will be either the
 real-field or dummy field used to create the PDF object.
 e.g. "1", "42", "aa", "ab".

 Use these commands to read filled-in PDF documents:

 handle = PDF_OPEN(pdf_path)
 Returns a handle value (10,.0) that points to a PDF document with
 pdf_path as the filename. Returns a negative value on error.

 error_value = PDF_CLOSE(handle)
 Frees all values and memory associated with a PDF handle and closes the
 document. Returns a non-zero number on error.

 num_fields = PDF_GETNUMFIELDS(handle)
 Returns the number of fields in the PDF document.

 name = PDF_GETFIELDNAME(handle, index)
 Returns the full name of a field in a PDF document, given its index. The
 index is a number between "1" and the num_fields value returned by
 PDF_GETNUMFIELDS.

 type = PDF_FIELDTYPE(handle, fieldname)
 Returns the field type name of the specified field fieldname, which is
 one of:
 • NONE
 • BUTTON
 • RADIO
 • CHECKBOX
 • TEXT
 • RICHTEXT
 • CHOICE
 • UNKNOWN

https://fptech.com/fptech/fpmanual/index.htm#t=pages%2Fpdf%2FFill_In_PDFs.htm&sx=t

 type = PDF_FIELDTYPE2(handle, index)
 Returns the field type name of the specified field index, which is one
 of:
 • NONE
 • BUTTON
 • RADIO
 • CHECKBOX
 • TEXT
 • RICHTEXT
 • CHOICE
 • UNKNOWN

 The index is a number between "1" and the num_fields value returned by
 PDF_GETNUMFIELDS.

 value = PDF_GETVALUE(handle, fieldname [, richtext])
 Returns the field value, e.g. the text in the field, checkbox status,
 combo box index, etc. for the given field name fieldname. Optionally,
 richtext can be set to "1" to return rich text data if it exists.

 value = PDF_GETVALUE2(handle, index [, richtext])
 Returns the field value, e.g. the text in the field, checkbox status,
 combo box index, etc. for the given field index index. Optionally,
 richtext can be set to "1" to return rich text data if it exists. The
 index is a number between "1" and the num_fields value returned by
 PDF_GETNUMFIELDS.

QRCODE Command
 ret = QRCODE(str, dest [, size [, logo [, fg [, bg]]]])
 Create a QR Code from a text string.

 str is the text to store in the QR code.

 dest is the full name and path to the QR code to be generated.

 size is the size of the QR code to be generated in pixels. Must be large
 enough to store the full QR code.

 logo is an optional logo to place in the center of the QR code.

 fg is the foreground color of the QR code in hexadecimal.

 bg is the background color of the QR code in hexadecimal.

 Returns the size of the generated QR code, or -1 on error.

 Example:
 Then: ret=QRCODE("fptech.com","/tmp/website.png")

QRCODE print code
 <QRCODE TEXT="qr text" [SIZE="size"] [COLOR="color"] [FILL="bg color"]
 [X="x-pos"] [Y="y-pos"]>

 Adds a QR code with the specified text to the PDF document.

 All attributes, except for "TEXT", are optional.

 TEXT is the text to add to the QR code when generating the image.

 SIZE is the width and height of the QR code, must be large enough to fit the
 entire generated image.

 COLOR is the foreground color of the QR code (in hexadecimal).

 FILL is the background color of the QR code (in hexadecimal).

 X X position. (Default: current X position.)

 Y Y position. (Default: current Y position.)

FPML Print Code Enhancements
 FPML print codes can now use field names for any attribute.

 Any attribute inside of an FPML print code can now reference a real field or
 variable inside of processing. Use "@" to reference a field.

 e.g.
 <IMAGE FILE="@1"> ' reference a real field
 <IMAGE FILE="@im"> ' reference a dummy field
 <IMAGE FILE="@image_path"> ' reference a long name variable

 Note: Print codes can also be stored in a print code table and do not need
 to be placed directly on the output to work.

Array Commands and Enhancements
 Added initial support for multi-dimensional arrays.

 DIM array[n1,n2,...,n8](l,e)
 Multi-Dimensional array of fields with length "l" & edit "e". Array edit is
 optional.

 Example:
 dim array(2,2)
 array["1","1"]="John"
 array["1","2"]="Smith"
 array["2","1"]="Sarah"
 array["2","2"]="Jane"

 Existing array functions can also use multi-dimensional arrays by
 referencing one of an array's sub arrays.

 Example:
 CLEAR array["1"]

subscript = INDEXOF(array, value)
 Find the subscript of some value in an array.

 Example:
 array["1"]="cat"
 array["2"]="dog"
 array["3"]="bird"

 subscript = INDEXOF(array, "dog") ' subscript will contain "2"

value = A_MAX(array [, array2 [, array3 [, ... [, arrayN]]]])
 Find the maximum value between the passed in arrays.

 Example:
 array1["1"]="5"
 array1["2"]="7"
 array2["1"]="30"
 value = A_MAX(array1, array2) ' value will contain "30"

 Note: This method supports multi-dimensional arrays.

value = A_MIN(array [, array2 [, array3 [, ... [, arrayN]]]])
 Find the minimum value between the passed in arrays.

 Example:
 array1["1"]="5"
 array1["2"]="7"
 array2["1"]="30"
 value = A_MIN(array1, array2) ' value will contain "5"

 Note: This method supports multi-dimensional arrays.

value = A_TOT(array [, array2 [, array3 [, ... [, arrayN]]]])>
 Total all of the values in the passed in arrays.

 Example:
 array1["1"]="5"
 array1["2"]="7"
 array2["1"]="30"
 value = A_TOT(array1, array2) ' value will contain "42"

 Note: This method supports multi-dimensional arrays.

value = A_AVG(array [, array2 [, array3 [, ... [, arrayN]]]])
 Find the avereage of all of the values in the passed in arrays.

 Example:
 array1["1"]="5"
 array1["2"]="7"
 array2["1"]="30"
 value = A_AVG(array1, array2) ' value will contain "14"

 Note: This method supports multi-dimensional arrays.

DECLARE Enhancement
 Added the ability to assign directly to a longvar when creating it.

 Example:
 DECLARE my_var(32,*)="Hello, World!"

Runtime Engine
 Reworked tokenization engine to no longer require setting PFTOKSIZE or related
 variables. Variable will now be silently ignored.

Define Processing
 Added a new F5 shortcut in Define Processing for calls. F5 will now open a
 call for editing, or, will prompt you to create the call if it does not
 exist.

Debugging
 New stacktrace option.

 Added a new option T to the debugger to display a stacktrace.

